Rotation Matrix
$P = (x, y) = (1, 0)$ $P' = (x', y' )$ $\cos{\theta} = \frac{x'}{x}$ $\sin{\theta} = \frac{y'}{x}$ therefore: $x' = \cos{\theta} \cdot x$ $y' = \sin{\theta} \cdot x$ similarly: $Q = (x, y) = (0, 1)$ $ Q' = (x', y' )$ $\cos{\theta} = \frac{y'}{y}$ $\sin{\theta} = \frac{-x'}{y}$ therefore: $x' = -\sin{\theta} \cdot y$ $y' = \cos{\theta} \cdot y$ add them together: $\begin{bmatrix} \cos{\theta} & -\sin{\theta} \\ \sin{\theta} & \cos{\theta} \\...